O Search or jump to... Pull requests Issues Marketplace Explore

& BenioffOceanlnitiative / cccBaltimoreTrashWheelML Private @Watch ~+ 3 ¢ Unstar 1 % Fork 0

<> Code (© Issues 1% Pull requests (® Actions [Projects 07 wiki @ Security |~ Insights i Settings

¥ main ~ ¥ 1branch ©1tag Go to file Add file ~ About]
Computer Vision Modeling for

ﬁ cy-xu update readme and help 4e2b068 22 days ago ‘O 54 commits Baltimore Trash Wheel Images
M Dboi_dataset clean up old files 26 days ago M Readme

B media add APl demo last month

M yolov3 update readme and help 22 days ago Releases 1

initi Latest
[_gitattributes add trained model to Ifs 25 days ago © V010 initial release
25 days ago

[.gitignore improved labeling stats, expanded dataset last month

[Dockerfile Dockerfile improve 26 days ago Packages

[README.md update readme and help 22 days ago No packages published

i L. . . . Publish your first package
[boi_model_API_demo.py Use original ubuntu image and miniconda install last month
= README.md Vi Contributors 4

G cy-xu CY Xu

crlang44 Chris Lang
Dataset
‘ aaronroan Aaron Roan

The Baltimore Trash Wheel Computer Vision Model was developed by researchers at the Benioff Ocean Initiative e OlivelliAri Arianna Olivelli
(BOI) at UC Santa Barbara. The model uses deep-learning to support operators of the Baltimore Trash Wheels in !
identifying ocean-bound river waste to collect data more efficiently and more accurately.

BOI Baltimore Trash Wheel Computer Vision Model and

We produced a custom dataset, BOI Baltimore Trash Wheel Dataset, which was used to train a PyTorch-based Languages
YOLOv3 model to detect 15 different classes of river wastes like plastic bottles or bags, foam containers or »
fragments, and other inorganic wastes in images taken from cameras mounted on the trash wheels in Baltimore. ® Python 89.2% Shell 9.2%

. ® Dockerfile 1.6%
The developers' intent for this model and dataset is for their use by other practitioners and researchers working on

capturing and studying waste in rivers to support a greater understanding of the types and sources of river waste
and to ultimately turn off the tap of plastic and other solid waste pollution into the ocean.

foam_other

[oom other J e

plastic_container

| plastic_cap
T

Usage via Docker

o install the docker application: https://hub.docker.com/

o pull the detector image we built from "docker hub" (pending formal release)

Build new docker image

build the docker image, name it cccml
docker build . —-f Dockerfile -t cccml

after building the image locally, it's ready to run in the container

start docker and enter the detector application

—-it: interactive mode

-v: mapping current directory to /data in Docker

—-shm-size: increase shared memory to 4GB

docker run -it -v "$(pwd)":/data ——shm-size=4gb cccml /bin/bash

assuming all target images are saved in the ‘images' directory, the dection results and the report

inside the docker, run the same detection commands explained below
poetry run yolo-detect ——conf_thres 0.1 ——images /data/images ——output /data/detection_result

accessing GPUs
https://docs.docker.com/engine/reference/commandline/run/#access—-an-nvidia-gpu

Manual installation

git clone https://github.com/BenioffOceanInitiative/cccBaltimoreTrashWheelML
cd cccBaltimoreTrashWheelML/yolov3

create a Python virtual environment named cccml for this project
conda create —-n cccml python=3.8 -y
conda activate cccml

install the dependent packages using poetry
pip3 install poetry —--user
poetry install

Download the trained model

the trained model is now included and saved as
yolov3/weights/boi_baltimore_model.pth

download yolo pretrained models (for training new models via transfer learning)
bash download_weights.sh

Detect objects, visualize results, and produce reports

detection, training, and evaluation should take palce inside the yolov3 directory
cd cccBaltimoreTrashWheelML/yolov3

poetry run yolo-detect \

—--images boi_dataset/valid.txt \
——conf_thres 0.1 \

—-nms_thres 0.5 \

——img_size 1024 \

--start_date 2019-02-01 \

——end_date 2022-03-01 \

—-weights weights/boi_baltimore_model.pth \
——output ./results_output

——images could be a directory including many images, or a .txt file with file paths pointing to images
——start_date and —-start_date help filter the data taken within a specific time duration
The BOI model is trained on 1024x1024 images, the best prediction results is expected at the same resolution.

Lower the confidence threshold conf_thres to include more detections (at the risk of higher false positive rate), it

PR [P— eAa e A~ P S

IS saTe 10 Use a lower conT_thres OT U.1 WITN @ Nigner nms_thres OT U.b as TNe aucplicated DOXES are removea by
the higher threshold, leaving the most fitting bounding box.

A detection report is saved in .txt and .csv formats for future interpretation (location is parsed from file names
so the target files should follow the previously defined naming foramt):

Index Class Harris Jones Mason Total
0 plastic_bag 10 1 0 1

1 plastic_bottle 176 44 0 220
2 plastic_cap 54 28 1 83
etc...

Train a new model

Images and annotations
Before training for the first time, please follow the dataset readme to prepare the data.

By default, download the images and place them in boi_dataset/images/ . The CVAT annotation files should be
placed in boi_dataset/annotations . The boi_dataset/label_converter.py converts the CVAT annotation to the
YOLO format needed for trianing new models.

The training scrips access the data through a symbolic link at yolov3/boi_dataset/ , which is pointed to
boi_dataset/ .

annotations to data/custom/labels/ . The dataloader expects that the annotation file corresponding to the image
data/custom/images/train.jpg has the path data/custom/labels/train.txt . Each row in the annotation file
should define one bounding box, using the syntax label_idx x_center y_center width height . The coordinates
should be scaled [0, 1], andthe label_idx should be zero-indexed and correspond to the row number of the
class name in data/custom/classes.names .

If the number of classes are chagned, following the instruction from Yolo to modify the neural network configire file
accordingly.

cd cccBaltimoreTrashWheelML/yolov3

poetry run yolo-train \

——pretrained_weights weights/darknet53.conv.74 \
——epochs 5000 \

——multiscale_training \

--seed 0 \

——comment multiscale_64-8-1024_1k24k27k

Load a Darknet-53 backend weights pretrained on ImageNet darknet53.conv.74 to gain a better start through
transfer learning.

The multiscale_training flag allows more generalized detection.

Track training progress in Tensorboard

« Initialize training
e Run tensorboard —--logdir='checkpoints' in the console to start tensorboard server

e Track training progress at http://localhost:6006/

Evaluate model performance

cd cccBaltimoreTrashWheelML/yolov3

poetry run yolo-test \

——iou_thres 0.4 \

—-nms_thres 0.5 \

——conf_thres 0.01 \

—-img_size 1024 \

—-weights checkpoints/training_dir/target_checkpoint.pth

A model performance report is generated after evalution (limited by the small sample size of certain classes, model
performance on class 1, 2, 4, 5, 7 are statistically meaningful at the moment):

Index Class AP Objects
0 plastic_bag 0.35333 20

1 plastic_bottle 0.85126 219

2 plastic_cap 0.65524 103

3 plastic_container ~ 0.10000 20
4 plastic_wrapper 0.63467 85
5 plastic_other 0.35607 162
6 foam_container 0.18182 1
7 foam_other 0.86932 274
8 glass_bottle 0.00000 5

9 paper_container 0.25000 4
10 paper_other 0.25000 4

1 metal_cap 0.00000 3
12 metal_can 0.00000 4
13 ppe 0.25000 4
14 misc 0.04167 60

API

An example prediction call from a simple OpenCV python script would look like this:

for model inferencing (detection) only
import cv2
from yolov3.pytorchyolo import detect, models

configuration file that define the nerual network
model_config = './boi_dataset/yolov3_boi.cfg"'

path to the trained model weights
trained_model = './yolov3/weights/boi_baltimore_model.pth'

load the trained weights to the model
model = models.load_model(model_config, trained_model)

load a sample image, convert OpenCV bgr to rgb
image = cv2.imread('./media/wpb_harriscreek_20201100_10300028_raw.JPG')

Runs the detection model on the image
boxes = detect.detect_image(model, image, img_size=1024, conf_thres=0.1, nms_thres=0.5)

print(boxes)

Output will be a numpy array in the following format:
[[x1, y1, x2, y2, confidence, class]]

BOI Baltimore Trash Wheel Dataset

Index Class Objects
0 plastic_bag 107
1 plastic_bottle 1167
2 plastic_cap 566
g plastic_container 89
4 plastic_wrapper 543
5! plastic_other 919
6 foam_container 87

7 foam_other 1601
8 glass_bottle 17

9 paper_container 15
10 paper_other 13

1 metal_cap 8

12 metal_can 23
13 ppe 29

14 misc 267

Credit
EAPyPI license (license pending discussion)

Benioff Ocean Initiative (BOI)

https://boi.ucsb.edu/

Clean Currents Coalition

https://cleancurrentscoalition.org/

MR. TRASH WHEEL® : A PROVEN SOLUTION TO OCEAN PLASTICS

https://www.mrtrashwheel.com/

PyTorch-YOLOv3

This project is built upon Erik's YOLOv3 implementation in PyTorch.

YOLOV3: An Incremental Improvement
Joseph Redmon, Ali Farhadi

Abstract

We present some updates to YOLO! We made a bunch of little design changes to make it better. We also trained
this new network that’s pretty swell. It's a little bigger than last time but more accurate. It's still fast though, don't
worry. At 320 x 320 YOLOv3 runs in 22 ms at 28.2 mAP, as accurate as SSD but three times faster. When we look at
the old .5 IOU mAP detection metric YOLOv3 is quite good. It achieves 57.9 AP50 in 51 ms on a Titan X, compared
to 57.5 AP50 in 198 ms by RetinaNet, similar performance but 3.8x faster. As always, all the code is online at
https://pjreddie.com/yolo/.

[Paper] [Project Webpage] [Authors' Implementation]

@article{yolov3,
title={YOLOv3: An Incremental Improvement},
author={Redmon, Joseph and Farhadi, Ali},
journal = {arXiv},
year={2018}

®© 2021 GitHub, Inc. Terms Privacy Security Status Docs O Contact GitHub Pricing API Training Blog About

